
www.elechouse.com

FM Radio Receiver Module

Introduction

Wanna make a radio yourself with Arduino? Here comes the Radio Receiver module which makes it very easy to make your own radio.

This module communicates with Arduino or other MCU through I2C interface. All commands are sent through I2C interface. We also

create a library for Arduino to control it.

Interface

The anti-reverse 4pin header is I2C interface. And the headphone jack is the read one.

I2C

VCC is 5V. TTL level of I2C interface is also 5V. With anti-reverse header, never have to worry about connecting in the wrong way if

you have 4pin anti-reverse cable.

Headphone Jack

Standard 3.5mm earphone jack.

Antenna

http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath=105_115&products_id=484

www.elechouse.com

On the picture, the hole marked with Antenna is where you connect or solder the antenna. Any metal line could serves as an antenna.

Here is an instruction on how to calculate the length antenna. Theoretically the antenna length for 100Mhz is 75cm.

We also connect the antenna to the headphone jack. When you use headphone jack, the line could serve as antenna. It works in the

same with those tiny radio devices which only work while you plug in the earphone. If you don’t use the headphone and connect loud

speaker to the Amplifier Output (shown above in the picture), you have to connect external antenna.

In the test we made a very simple antenna:

Note that plugging in headphone into the jack will disable the Amplifier Output. So you couldn’t use headphone line as an antenna

while you want the sound from the Amplifier Output.

This module’s performance depends much on the antenna. So a good antenna will contribute much to its performance. If you to

improve with a good external antenna and want to disable the headphone jack antenna, you could remove the following resistor:

Amplifier Output

There are 4 pads which you could connect your speaker on. L- and R- are not connected together. But you could connect them

together while wiring, or bridge the Output Pad to connect them together. The amplifier could drive up to 3W speakers. In the test,

http://www.ehow.com/how_5990599_calculate-fm-antenna-length.html

www.elechouse.com

we tried 5W and it works well (however, we don’t recommend to do so). Also, please note that the working jack will disable Amplifier

Output. Recommended speaker: 2W3.5ohm Small Speaker

General output IO

Those ports could be controlled by commands received from I2C. Users could control them output HIGH or LOW. So they might be

useful in some application. For example, users could connect LED on it to indicate state.

Connection

If you have our Arduino Sensor Shield V6, you could plug and play as the following picture:

If you don't have sensor shield, you could wire them in the following way:

Arduino FM Module

GND ------------ GND
5V ------------ VCC
SDA ------------ SDA

SCL ------------ SCL

Code

We supply library and example code. The following is example code. For better understanding, I add comment aside the code in blue.

/** include library */
#include <FMRX.h>
float channel;
void setup(void)
{
 Serial.begin(9600);
 Serial.print("FM-RX Demo By Elechosue\r\n");

http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath=168_170&products_id=2162
http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath=74&products_id=2198

www.elechouse.com

 /** I2C initial */
 i2c_init();

 fmrx_power();
 fmrx_read_reg(fmrx_reg_r);
 Serial.print("FMRX Module Power up.\r\n");

 /** set volume */
 fmrx_set_volume(15);
 Serial.println("Volume Set");

 /** Receiving signal strength threshold. Those signal whose strength is under this value will be ignored.
 Range:0-127
*/
 fmrx_set_rssi(15);

 /**
 Select a band, parameter:
 BAND_EU: 87-108MHz, Europe
 BAND_US: 87-108MHz, USA
 BAND_JP: 76-91MHz, JAPAN
 BAND_JP_WIDE: 76-108MHz
 */
 fmrx_select_band(BAND_EU);

 channel=fmrx_seek(SEEK_DOWN);
 Serial.println("Initial seek.");
 Serial.print("Channel:");
 Serial.print(channel, 2);
 Serial.println("MHz");
}

void loop(void)
{
 static u8 vol;
 if(Serial.available()>0){
 switch(Serial.read()){

/*
 If received character ‘1’, seek for music station upward
*/
case '1':
 Serial.println("Wait...");
 channel = fmrx_seek(SEEK_DOWN); // seek for radio station
 Serial.println("Seek down.");
 Serial.print("Channel:");
 Serial.print(channel, 2);
 Serial.println("MHz");
 break;

/*
 If received character ‘2’, seek for music station downward
*/
case '2':
 Serial.println("Wait...");
 channel = fmrx_seek(SEEK_UP); // seek for radio station
 Serial.println("Seek up.");
 Serial.print("Channel:");
 Serial.print(channel, 2);
 Serial.println("MHz");
 break;

/*
 If received character ‘3’, turn up volume by 1. Volume value: 0~15
*/
case '3':
 Serial.println("Wait...");
 if(vol < 0x0F){
 vol++;
 }
 fmrx_set_volume(vol); // set the volume
 Serial.print("Volume+:");

www.elechouse.com

 Serial.println(vol);
 break;

/*
 If received character ‘4’, turn down volume by 1. Volume value: 0~15
*/
case '4':
 Serial.println("Wait...");
 if(vol > 0){
 vol--;
 }
 fmrx_set_volume(vol); // set the volume
 Serial.print("Volume-:");
 Serial.println(vol);
 break;

/**
 If received ‘&’, set new channel. Input data must start with '&' and followed by 4 numbers, the first 3 is the integer part

(Unit: MHz), the last one is the decimal part. And the channel must between 76MHz and 108Mhz.(eg: &0756 for 75.6MHz, and &0666 is out of range)

 */

case '&':
 u8 i,buf[4];
 float ch;
 i=0;
 delay(30);
 while(Serial.available()&&i<4){
 buf[i]=Serial.read();
 if (buf[i]<= '9' && buf[i]>= '0') {
 i++;}
 else{
 i=0;
 break;
 }
 }
 if (i==4){
 ch = (buf[0]-'0')*100+(buf[1]-'0')*10+(buf[2]-'0')*1+0.1*(buf[3]-'0');
 Serial.println(fmrx_set_freq(ch),2); //set new frequency and print new frequency
 }else{
 Serial.println("Input Error.");
 }
 /** dummy useless character */
 while(Serial.available()){
 Serial.read();
 }
 break;
 }
 }
}

Upload the example sketch to Arduino and open the Serial monitor:

www.elechouse.com

You could send command through serial monitor. The following commands are supported:

‘1’: seek for music station upward

‘2’: seek for music station downward

‘3’: turn up volume by 1. Volume value: 0~15

‘4’: turn down volume by 1. Volume value: 0~15

‘&XXXX’: set new frequency. Input data must start with '&' and followed by 4 numbers, the first 3 is the integer part (Unit: MHz), the

last one is the decimal part. And the channel must between 76MHz and 108Mhz. (eg: &0756 for 75.6MHz, and &0666 is out of range)

Where to buy

FM Radio Receiver Module -- Arduino compatible

Disclaimer and Revisions

The information in this document may change without notice. If you have any problem about it, please visit
www.elechouse.com or email to
Revision History

Rev. Date Author Description
A Oct. 31

st
 , 2012 Wilson Initial version

http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath=168_170&products_id=2207
http://www.elechouse.com/

