TECHNICAL DATA

MQ-8 GAS SENSOR

FEATURES

- * High sensitivity to Hydrogen (H₂)
- * Small sensitivity to alcohol, LPG, cooking fumes
- * Stable and long life

APPLICATION

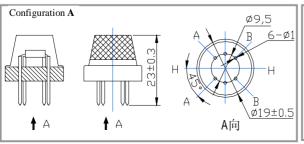
They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of Hydrogen (H_2) , avoid the noise of alcohol and cooking fumes, LPG,CO.

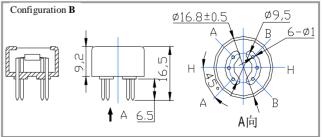
SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
$V_{\rm H}$	Heating voltage	5V±0.1	ACOR DC
$P_{\rm L}$	Load resistance	10 K Ω	
R _H	Heater resistance	31±5%	Room Tem
P _H	Heating consumption	less than800mW	

B. Environment condition


Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R_{H}	Related humidity	less than 95% Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%


C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing Resistance	10K Ω - 60K Ω	Detecting concentration
		(1000ppm H_2)	scope:
			100-10000ppm
α			Hydrogen (H ₂)
(1000ppm/	Concentration slope rate	≤0.6	
500ppmH ₂)			
Standard	Temp: 20°C ±2°C	Vc:5V±0.1	
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition	·		
Preheat time	Over 24 h		

D. Structure and configuration, basic measuring circuit

	Parts	Materials	5 ₇	A, \downarrow , B	
1	Gas sensing layer	SnO ₂	4 — 4	Н	
2	Electrode	Au	2		Vc: A or B
3	Electrode line	Pt	3 3	A B	
4	Heater coil	Ni-Cr alloy		A I b	DC 5v 4 Vout
5	Tubular ceramic	Al ₂ O ₃	6	Н	
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)	7		H RL
7	Clamp ring	Copper plating Ni			
8	Resin base	Bakelite	8	J	
9	Tube Pin	Copper plating Ni			F: 2
			20mm -9	'H	Fig.2
			Fig. 1		

Structure and configuration of MQ-8 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-8 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

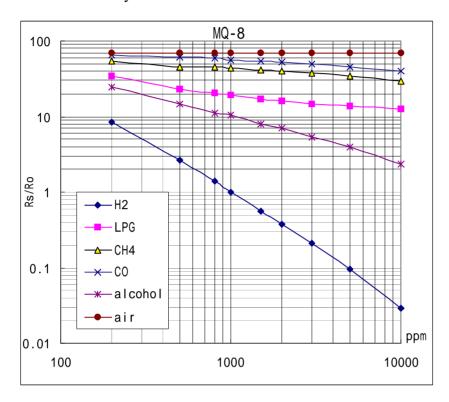


Fig.3 is shows the typical sensitivity characteristics of the MQ-8 for several gases.

in their: Temp: 20°C , Humidity: 65%, O_2 concentration 21% RL=10k Ω

Ro: sensor resistance at 1000ppm H_2 in the clean air. Rs:sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-8

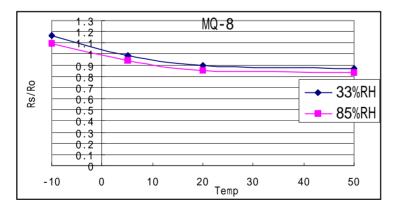


Fig.4 is shows the typical dependence of the MQ-8 on temperature and humidity. Ro: sensor resistance at 1000ppm of H₂ in air at 33% RH and 20 degree.

Rs: sensor resistance at 1000ppm of H₂ in air at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-8 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm H_2 concentration in air and use value of Load resistance (R_L) about $10~K~\Omega$ ($5K~\Omega$) to $33~K~\Omega$).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.