Introduction

The module could recognize your voice. It receives configuration commands or responds through serial port interface. With this module, we can control the car or other electrical devices by voice.

This module can store up to 15 pieces of voice instruction. Those 15 pieces are divided into 3 groups, with 5 in each group. First we should train the module with voice instructions group by group. After that, we should import one group before it could recognize the 5 voice instructions within that group. If we need to implement instructions in other groups, we should import the group first. This module is speaker dependent. If you trained the module, your friend might not be able to make it work.

What’s new in V2

We’ve updated this module to V2. We made V2 easy to control. Except only serial input or output of V1, V2 has other useful ways to control and output the result.

You could find a new G0PI row on V2. GCH and GCL are used to import the voice group. And O1~O5 are pins which output the result of voice recognition. For example, if the first voice instruction in the working group is recognized, O1 could output HIGH signal. This output sometimes is very useful, such as while controlling the relay.

The O1~O5 output could be set as many type. You could set it by sending command to it through serial interface. Those setting will be recorded in memory. It will not lose even with power off. You could find the commands in later content.
V1 is black and V2 is red.

Technical Parameters

- Voltage: 4.5-5.5V
- Current: <40mA
- Digital Interface: 5V TTL level UART interface and GPIO
- Analog Interface: 3.5mm mono-channel microphone connector + microphone pin interface
- Size: 30mm x 47.5mm
- Recognition accuracy: 99% (under ideal environment)

Serial Command

This module can be configured by sending commands via serial port. Configuration will be not erased after powered off.

Its interface is 5V TTL. The serial data format: 8 data bits, no parity, 1 stop bit. The default baud rate is 9600 and baud rate can be changed.

Command format is "Head + Key". "Head" is a Oxaa, and "Key" is as follows:

<table>
<thead>
<tr>
<th>Key (HEX format)</th>
<th>Description</th>
<th>Respond in Common Mode</th>
<th>Respond in Compact Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Enter into “Waiting” state</td>
<td>"Waiting! \n": successful "ERROR! \n": Instruction error</td>
<td>0xcc : successful 0xe0 : Instruction error</td>
</tr>
<tr>
<td>0x01</td>
<td>Delete the instructions of group 1</td>
<td>"Group1 Deleted ! \n": successful "ERROR! \n": Instruction error</td>
<td>0xcc : successful 0xe0 : Instruction error</td>
</tr>
<tr>
<td>0x02</td>
<td>Delete the instructions of group 2</td>
<td>"Group2 Deleted ! \n": successful "ERROR! \n": Instruction error</td>
<td>0xcc : successful 0xe0 : Instruction error</td>
</tr>
<tr>
<td>0x03</td>
<td>Delete the instructions of group 3</td>
<td>"Group3 Deleted ! \n": successful "ERROR! \n": Instruction error</td>
<td>0xcc : successful 0xe0 : Instruction error</td>
</tr>
<tr>
<td>0x04</td>
<td>Delete the instructions of all the 3 groups</td>
<td>"All Groups Deleted \n": successful "ERROR! \n": Instruction error</td>
<td>0xcc : successful 0xe0 : Instruction error</td>
</tr>
<tr>
<td>0x11</td>
<td>Begin to record instructions of group 1</td>
<td>"ERROR! \n": Instruction error "START \n": Ready for recording, you can speak</td>
<td>0xe0 : Instruction error 0x40 : Ready for recording, you...</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>"ERROR"! \n" : Instruction error</td>
<td>"START" \n" : Ready for recording, you can speak now</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>0x12</td>
<td>Begin to record instructions of group 2</td>
<td>"No voice \n" : no voice detected</td>
<td>"No voice \n" : no voice detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Again \n" : Speak the voice instruction again. Do not speak until getting the START message</td>
<td>"Again \n" : Speak the voice instruction again. Do not speak until getting the START message</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Too loud \n" : Too loud to record</td>
<td>"Too loud \n" : Too loud to record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Different \n" : voice instruction confirming failed. Voice for the second chance is different with the first one.</td>
<td>"Different \n" : voice instruction confirming failed. Voice for the second chance is different with the first one.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Finish one \n" : recording one voice instruction successfully</td>
<td>"Finish one \n" : recording one voice instruction successfully</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Group1 finished! \n" : finish recording group 1</td>
<td>"Group1 finished! \n" : finish recording group 1</td>
</tr>
<tr>
<td>0x13</td>
<td>Begin to record instructions of group 3</td>
<td>"ERROR"! \n" : Instruction error</td>
<td>"ERROR"! \n" : Instruction error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"START" \n" : Ready for recording, you can speak now</td>
<td>"START" \n" : Ready for recording, you can speak now</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"No voice \n" : no voice detected</td>
<td>"No voice \n" : no voice detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Again \n" : Speak the voice instruction again. Do not speak until getting the START message</td>
<td>"Again \n" : Speak the voice instruction again. Do not speak until getting the START message</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Too loud \n" : Too loud to record</td>
<td>"Too loud \n" : Too loud to record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Different \n" : voice instruction confirming failed. Voice for the second chance is different with the first one.</td>
<td>"Different \n" : voice instruction confirming failed. Voice for the second chance is different with the first one.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Finish one \n" : recording one voice instruction successfully</td>
<td>"Finish one \n" : recording one voice instruction successfully</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Group3 finished! \n" : finish recording group 3</td>
<td>"Group3 finished! \n" : finish recording group 3</td>
</tr>
<tr>
<td>0x21</td>
<td>Import group 1 and be ready for voice instruction</td>
<td>"Group1 Imported \n" : Successful</td>
<td>0xcc : Successful</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ERROR! \n" : Instruction error</td>
<td>0xe0 : Instruction error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Import failed \n" : importing voice group failed</td>
<td>0xe1 : Importing voice group failed</td>
</tr>
<tr>
<td>0x22</td>
<td>Import group 2 and be ready for voice instruction</td>
<td>"Group2 Imported \n" : Successful</td>
<td>0xcc : Successful</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ERROR! \n" : Instruction error</td>
<td>0xe0 : Instruction error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Import failed \n" : importing voice group failed</td>
<td>0xe1 : Importing voice group failed</td>
</tr>
<tr>
<td>0x23</td>
<td>Import group 3 and be ready for voice instruction</td>
<td>"Group3 Imported \n" : Successful</td>
<td>0xcc : Successful</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ERROR! \n" : Instruction error</td>
<td>0xe0 : Instruction error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Import failed \n" : importing voice group failed</td>
<td>0xe1 : Importing voice group failed</td>
</tr>
</tbody>
</table>
0x24 Query the recorded group

- "Used group:0\n": No group is recorded
- "Used group:1\n": Group 1 is recorded
- "Used group:2\n": Group 2 is recorded
- "Used group:3\n": Group 3 is recorded
- "Used group:12\n": Group 1 and Group 2 are recorded
- "Used group:13\n": Group 1 and Group 3 are recorded
- "Used group:23\n": Group 2 and Group 3 are recorded
- "Used group:123\n": All the 3 groups are recorded

- "ERROR! \n": Instruction error

0x31 Change the baud rate to 2400bps

- "Baud: 2400\n": Successful
- "ERROR! \n": Instruction error

0x32 Change the baud rate to 4800bps

- "Baud: 4800\n": Successful
- "ERROR! \n": Instruction error

0x33 Change the baud rate to 9600bps

- "Baud: 9600\n": Successful
- "ERROR! \n": Instruction error

0x34 Change the baud rate to 19200bps

- "Baud: 19200\n": Successful
- "ERROR! \n": Instruction error

0x35 Change the baud rate to 38400bps

- "Baud: 38400\n": Successful
- "ERROR! \n": Instruction error

0x36 Switch to Common Mode

- "Common Mode\n": Successful
- "ERROR! \n": Instruction error

0x37 Switch to Compact Mode

- "Compact Mode\n": Successful
- "ERROR! \n": Instruction error

0x41 Reset output of O1

- "Ok\n": Successful
- "ERROR! \n": Instruction error

0x42 Reset output of O2

0x43 Reset output of O3

0x44 Reset output of O4

0x45 Reset output of O5

0x46 Reset output of O1~O5

0x50 Set O1~O5 to Pulse Mode (negative pulse)

- "Ok\n": Successful
- "ERROR! \n": Instruction error

0x51 Set O1~O5 to Flip Mode

0x52 Set O1~O5 to Down Mode

0x53 Set O1~O5 to Up Mode

0x60 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x61 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x62 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x63 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x64 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x65 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x66 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x67 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms

0x68 Set the output duty of O1~O5 in Pulse Mode

- 0x60 -- 10ms
- 0x61 -- 15ms
- 0x62 -- 20ms
- 0x63 -- 25ms
- 0x64 -- 30ms
- 0x65 -- 50ms
- 0x66 -- 60ms
- 0x67 -- 70ms
- 0x68 -- 80ms
- 0x69 -- 90ms
- 0x6A -- 100ms
- 0x6B -- 200ms
- 0x6C -- 300ms
| 0x69 | 0x6D -- 400ms
| 0x6E -- 500ms
| 0x6F -- 1s | |
| 0x6A | |
| 0x6B | |
| 0x6C | |
| 0x6D | |
| 0x6E | |
| 0x6F | |
| 0x70 | Reset Serial Port to:
| 9600 baud rate, 8 data bits, no parity, 1 stop bit | "Ok\n": Successful
| "ERROR! \n": Instruction error | 0xcc : successful
| 0xe0 : Instruction error |
| 0xbb | Query version information | Version information | No respond |

If you want to modify the serial baud rate to 38400, you need to send command: 0xaa35. If successful, it will return "Baud: 38400 \n"(in Common Mode) or 0xcc (in Compact Mode). The baud rate is set to 38400.

The main difference between Compact Mode and Common Mode is the returning message. Common Mode response is long string but Compact Mode response is a byte. For example, after sending 0xaa04 to delete all the contents of the 3 groups, in Common Mode it will return "All Groups Deleted! \n", but in Compact Mode it will return a concise bytes such as 0xcc which means a successful operation.

Here we will introduce more about the output of O1~O5:

Pulse Mode: Output is negative pulse. The pulse duration time (pulse duty) could be set by command 0x60 ~ 0x6F

Flip Mode: each time while the module recognizes voice command, it will change the state of the output pin.

Down Mode: The output will become LOW from HIGH once it detects voice command. It will never come back to HIGH again until the module receives output reset command 0x41 ~ 0x46

Up Mode: The output will become HIGH from LOW once it detects voice command. It will never come back to LOW again until the module receives output reset command 0x41 ~ 0x46

There will be an example:

A: Starting point while you import the voice group.

B: The 1st time it recognizes voice command.

C: The 2nd time it recognizes voice command.

D: The 3rd time it recognizes voice command.

E: The time while output reset command is received (0x41 ~ 0x46).

The back wire is output wave shape.
For the first-time use, we need to do some configuration:

1. Select the serial baud rate (default 9600)
2. Select the communication mode: Common Mode or Compact Mode
3. Recording five instructions of the first group (or 2nd or 3rd as required)
4. Import the group you need to use (only recognize 5 instructions within one group at the same time)

After all the setting above, you can speak or send voice instruction to it. If identified successfully, result will be returned via serial port in the format: group number + command number. For example, return Result: 11 (Compact mode returns 0x11) means identified the first command of group 1.

If voice instruction is recorded, each time after you power it on, you need to import the group before letting it identify voice instructions.

LED

Recording stage:
1. Record indication: D1 (RED) flashes 3 times within the 600ms, then off for 400ms, and then flashes quickly for 4 times within 600ms. Now the recording indication is over.

2. Begin to speak: D1 (RED) is off for 400ms, and then is on. Voice during the time while D1 (RED) is on will be recorded by this module.

3. Recording a voice instruction successfully for the first time: D1 (RED) off, D2 (ORANGE) on for 300ms.

4. Recording a voice instruction successfully for the first time: D1 (RED) off, D2 (ORANGE) on for 700ms.

5. Recording failure: D2 (ORANGE) flashes 4 times within the 600ms. In cases that voice instructions detected twice don’t match, or the sound is too large, or there is no sound, recording will fail. You need to start over the recording process for that instruction.

Waiting mode:

In waiting mode, D2 (ORANGE) is off, and D1 (RED) is on for 80ms every other 200ms, fast flashing. In this mode, it doesn’t recognize voice command, only waiting for serial commands.

Recognition stage:

In identification stage, D2 (ORANGE) is off, and D1 (RED) is on for 100ms every other 1500ms, slow flashing. In this stage, this module is processing received voice signal, and if matching, it will send the result immediately via serial port.

Recording

Before using it, we have train it by recording voice instructions. Each voice instruction has the maximum length of 1300ms, which ensures that most words can be recorded. Once you start recording, you can’t stop the recording process until you finish all the 5 voice instructions recording of one group. Also, once you start recording, the previous voice instructions in that group will be erased. In training state, this module doesn’t reply to any other serial commands.

LED will flash to indicate state. Please refer to the LED part.

First, you need a serial tool. Here we use AccessPort (Download page).
1. **Serial port setting:**
 - Baud rate: 9600
 - Parity bit: None
 - Data bit: 8
 - Stop bit: 1
 - Send format: Hex
 - Receive format: Char

2. **Send commands**

 Send: 0xaa11

 Receive (in Common Mode):
No voice // I did not make any sound. So it replied such message

Speak now

Again

Speak again now

Different // I spoke another words for the second time. So it replied such message

Speak now

Again

Speak again now

Finish one // recording one instruction successfully

Again

Finish one

Again

Finish one

Again
Finish one

Group 1 finished! // recording group 1 successfully

By now, you’ve finished instruction recording for group 1.

Recognition

We added another way to import the voice instruction group on V2. For V1, the only way is to send command to it through serial port, for example:

- Send command **0xAA21** to import group 1.
- Send command **0xAA22** to import group 2.
- Send command **0xAA23** to import group 3.

On V2, we added an easy way to import the group:

Look at the following picture, you could control GCH and GCL pins. Those two pins are all 5V TTL.

<table>
<thead>
<tr>
<th>GCH</th>
<th>GCL</th>
<th>Working State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>LOW</td>
<td>No Change</td>
</tr>
<tr>
<td>LOW</td>
<td>HIGH</td>
<td>Import Group 2</td>
</tr>
<tr>
<td>HIGH</td>
<td>LOW</td>
<td>Import Group 1</td>
</tr>
<tr>
<td>HIGH</td>
<td>HIGH</td>
<td>Import Group 3</td>
</tr>
</tbody>
</table>

Try to connect GND to make sure they have the common ground.

Once the group is important, it will output message through serial port. It could have 15 voice instructions in 3 groups. Each time you need to import the group before it could recognize instructions in that group. That means, this module could recognize 5 voice instructions at the same time. In recognition stage, this module could receive other serial commands. It will not exit the recognition stage until you send **0xAA00**, or delete that group, or begin recording instructions.
There are some tricks to improve the recognition rate.

Try to record and use it in the same environment. And noise could greatly reduce the recognition rate. MIC plays very important role. As for the MIC wire connection to this module, the shorter, the better.

In this test, I recorded 5 voice instructions: white, red, green, blue, off.

First time I use a simple MIC as follows:
I found occasionally this module could not distinguish “red” and “green”. Then I changed the MIC as follows:

![Image of the module and microphone](image)

Then the recognition rate is greatly improved.

Also I find that it is a little hard for this module to distinguish “of” and “off”. To distinguish those two similar pronunciations, high-sensitive MIC is required and speaking must be very clear, as well as in quiet environment. All those limitation makes low practicality. But there are simple ways to solve it. Make your voice instructions distinctive. Do not use voice instructions of similar pronunciation.

Reset the Serial Port

On V2, we added a way to reset the serial port since many customers would forget the serial parameter some time later after they changed it.

Before powering on the module, bridge the TX and RX pins

![Image of the bridge process](image)

Then Power the module on.
Contact information

![Elechouse Logo](https://www.elechouse.com)

Web: www.elechouse.com Email: elechouse@elechouse.com

Disclaimer and Revisions

The information in this document may change without notice.

Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sep. 29th, 2011</td>
<td>Wilson Shen</td>
<td>Initial version</td>
</tr>
<tr>
<td>B</td>
<td>Mar. 4th, 2013</td>
<td>Wilson Shen</td>
<td>V2</td>
</tr>
</tbody>
</table>