PRODUCT MANUAL: PN5180 INDUSTRIAL NFC FRONTEND
MODULE

--HIGH-PERFORMANCE ISO 15693 & ISO 14443 READER

ANTENNA AREA

@eee®

D’f’ﬂw

ANTENNA AREA
SPI=3V3
V3LV VNNILNY

o
-
-
=
-
-
-
-
=
L
=

3SNOHI3 13
3TNAON Ji4N 08LSNd

ANTENNA AREA
V3I&VY VNNILNY

L

(] |
VISV YNNILNY

1. PRODUCT OVERVIEW

The PN5180 NFC Module is a robust NFC frontend module designed to overcome the stability issues found in
generic consumer-grade readers. Built for industrial environments, it features an enhanced power architecture,

superior thermal stability, and a dedicated hardware control interface.

It offers best-in-class read range for ISO 15693 (ICODE) tags and full support for ISO 14443 Type A/B, FeliCa,
and NFC P2P (ISO 18092) standards.

Key Features

¢ Industrial Power Architecture: Features a 80uF capacitor reservoir and a high-speed ME6211 LDO.
This design absorbs RF current surges (up to 250mA), preventing voltage dips during continuous high -

power transmission.

e Fail-Safe "Hard Reboot"” (PD/CE): A dedicated Chip Enable pin allows the host MCU to physically
power-cycle the PN5180 logic core. This ensures 100% recovery from state-machine lockups without

manual intervention.

e Logic Level Flexibility (1.8V - 3.3V): The PVDD reference input allows direct interfacing with modern
1.8V MCUs (STM32, ESP32-S3) or standard 3.3V systems via an onboard jumper.

e Optimized RF Tuning: Thermally stable components eliminate "hot-dead" drift, ensuring consistent read

range across temperature variations.

2. TECHNICAL SPECIFICATIONS

Parameter Value Note

Main Chip NXP PN5180 High-performance Frontend
Input Voltage (5V Pin) 4.5V -5.5V DC Required for RF TVDD supply
Logic Voltage (PVDD) 1.65V - 3.6V DC Matches MCU IO voltage
Rated Power ~095W Peak RF transmission power

Supported Protocols ISO 15693, ISO 14443 A/B, FeliCa, P2P

Host Interface SPI (up to 7 Mbps) Requires BUSY line for flow control
Connector HX1.25-10P 10-Pin, 1.25mm pitch
Dimensions 40.02mm \times 42.36mm (1575.4mil \times 1667.8mil)

3. HARDWARE INTERFACE

3.1 Pinout Description

Based on the physical PCB layout, the 10-pin interface is defined as follows (Top to Bottom):

Pin Type Description

Name

1 PD/CE Input Power Down / Chip Enable. High (1) = Enable; Low (0) = Hard Power Down. Used

for hard rebooting.

2 5V Power = RF Power Supply. Must connect to 5V.
3 PVDD Ref Logic Level Reference. Connect to MCU VCC (1.8V or 3.3V). (See Section 3.2)
4 GND Power = Ground.

5 NSS Input SPI Chip Select (Active Low).

6 MOSI Input SPI Data In (Master Out Slave In).

7 MISO Output = SPI Data Out (Master In Slave Out).

8 SCK Input SPI Clock.
9 BUSY Output Flow Control (Crucial). High = Chip Busy. Host must wait.
10 RST Input Soft Reset.

3.2 Logic Level Configuration
The module features a solder jumper labeled SPI=3V3 on the board:
e Option A: Standard 3.3V MCUs (ESP32, Arduino)
o Action: Bridge/Solder the SPI-3V3 jumper.
o Wiring: Leave Pin 3 (PVDD) disconnected. The module uses its internal 3.3V for logic.
e Option B: 1.8V MCUs (New STM32, ESP32-S3)
o Action: Leave SPI-3V3 jumper OPEN (Default).
o Wiring: Connect Pin 3 (PVDD) to your MCU's 1.8V power rail.

3.3 Extension Interface
Located at the top of the module, the header (Standard 2.54mm pitch) breaks out advanced GPIOs for interrupt-

driven applications and low-power modes.

Pin Label Function Description Application Note

(PCB)

REQ Request / Wakeup Input. Used to wake up the PN5180 from certain sleep states. Used to
enter firmware upgrade mode.

AUX1 Auxiliary Pin 1 Analog/Digital test signal or auxiliary control. Often left unconnected.

IRQ Interrupt Request Crucial for Low Power Mode. Output signal that goes HIGH when a

tag is detected (LPCD) or data is ready, allowing the MCU to sleep
instead of polling.
GPO1 General Purpose Out Configurable output pin for status indication.
Tip: If you plan to use the Low Power Card Detection (LPCD) feature provided in the software library, you MUST
connect the IRQ pin to an interrupt-capable GPIO on your MCU.

4. SOFTWARE INTEGRATION GUIDE

4.1 Library Installation

For ESP32 and Arduino platforms, use the open-source driver library maintained by Elechouse.

e GitHub Repository: wilson-elechouse/PN5180_ELECHOUSE

e Download: https://github.com/wilson-elechouse/PN5180_ELECHOUSE

4.2 ESP32 Connection Example

Connect the module to an ESP32 development board using the standard VSPI bus:

PN5180 Pin ESP32 GPIO
5v 5V/VIN
GND GND

PVDD 3.3V (or Bridge Jumper)
NSS GPIO 5
MOSI GPIO 23
MISO GPIO 19
SCK GPIO 18
BUSY GPIO 16
RST GPIO 17
PD/CE GPIO 22

4.3 Code Example (ISO 14443A / Mifare)

The following code demonstrates how to initialize the module, perform a "Hard Reboot" using the CE pin for

stability, and scan for tags.

S
* PN5180 Industrial Module - ESP32 Integration Example
* Protocol: 1ISO 14443 Type A (Mifare)
* Requirements. 'PN5180 Library' by Wilson-Elechouse

*/

#include <PN5180.h>

https://github.com/wilson-elechouse/PN5180_ELECHOUSE

#include <PN5180/1SO14443.h>

// Pin Definitions for ESP32
#define PN5180 NSS 5
#define PN5180 BUSY 16
#define PN5180 RST 17

#define PN5180 CE 22 // Connected to PD/CE pin for Hard Reboot contro/

// Create PN5180 instance

PN51801SO14443 nfc(PN5180 NSS, PN5180 BUSY, PN5180 RST);

void setup() {
Serial.begin(115200);

Serial. printin("SYSTEM START: PN5180 Industrial Module”);

// --- INDUSTRIAL STABILITY: HARD REBOOT SEQUENCE ---

/7 This ensures the PN5180 is in a clean state even if the MCU just crashed/reset.
pinMode(PN5180 CE, OUTPUT);

Serial. printin("Performing Hard Reboot..");

digitalWrite(PN5180_CE, LOW), // Physically cut logic power

aelay(50);

digitalWrite(PN5180_CE, HIGH), // Restore logic power

delay(50); // Allow boot time

/=== LIBRARY INITIALIZATION ---
Serial. printin("Initializing SPl & RF Field...");

nfc.begin(); /7 Initialize SPI

nfc.reset(); /7 Soft reset command

nfc.setupRF(), // Enable RF field (High Power Mode)

/7 Verify Connection

uint8_t productVersion;,

nfc.readEEprom(PRODUCT _VERSION, productVersion, 2);

Serial. printf("Hardware Found - Product Version: %d.%d\n", productVersion, productVersion);

Serial. printin("Scanning for ISO14443A Tags...");

void loop() {
// Buffer to store UID

unt8_t uid:

/7 Check for card presence and read UID
// readCardSerial returns the UID length (0 if no card)

uint8_t uidlength = nfc.readCardSerial(uid);

if (uidLength > 0) {
Serial.print("Tag Detected! UID: ");
for (int 1 = 0; 1 < uidlength, i++){
If (uidfi] < Ox10) Serial.print("0");
Serial. print(uidfi], HEX);
Serial. print(" ")
/

Serial. printin();

/7 Add delay to prevent serial flooding

delay(1000);

/7 Minimal polling delay

delay(20);

5. MECHANICAL DATA & RESOURCES

e PCB Dimensions: 40.02 mm x 42.36 mm
¢ Mounting Holes: 3x Standard M3 equivalent (See 3D model)
e 3D Step File: Download Here

e GitHub Library: https://github.com/wilson-elechouse/PN5180_ELECHOUSE

e Product page: https://www.elechouse.com/product/pn5180-nfc-module/

https://www.elechouse.com/wp-content/uploads/2025/12/3D_PN5180.zip
https://github.com/wilson-elechouse/PN5180_ELECHOUSE
https://www.elechouse.com/product/pn5180-nfc-module/

